
These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 1

Software Engineering: A Practitioner’s Approach, 6/e

Chapter 31
Reengineering

copyright © 1996, 2001, 2005

R.S. Pressman & Associates, Inc.

For University Use Only
May be reproduced ONLY for student use at the university level

when used in conjunction with Software Engineering: A Practitioner's Approach.
Any other reproduction or use is expressly prohibited.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 2

Reengineering

Business
processes

IT
systems

Software
applicationsReengineering

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 3

Business Process Reengineering
Business definition. Business goals are identified within the context of four key
drivers: cost reduction, time reduction, quality improvement, and personnel
development and empowerment.
Process identification. Processes that are critical to achieving the goals defined in
the business definition are identified.
Process evaluation. The existing process is thoroughly analyzed and measured.
Process specification and design. Based on information obtained during the first
three BPR activities, use-cases (Chapter 7) are prepared for each process that is to
be redesigned.
Prototyping. A redesigned business process must be prototyped before it is fully
integrated into the business.
Refinement and instantiation. Based on feedback from the prototype, the
business process is refined and then instantiated within a business system.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 4

Business Process Reengineering
Business
definition

Process
identification

Process
Evaluation

Process
Specification
and Design

Prototyping

Refinement
&

Instantiation

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 5

BPR Principles
Organize around outcomes, not tasks.
Have those who use the output of the process perform the
process.
Incorporate information processing work into the real work that
produces the raw information.
Treat geographically dispersed resources as though they were
centralized.
Link parallel activities instead of integrated their results. When
different
Put the decision point where the work is performed, and build
control into the process.
Capture data once, at its source.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 6

Software Reengineering

Forward
engineering

Data
restructuring

code
restructuring

reverse
engineering

document
restructuring

inventory
analysis

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 7

Inventory Analysis
build a table that contains all applications
establish a list of criteria, e.g.,

name of the application
year it was originally created
number of substantive changes made to it
total effort applied to make these changes
date of last substantive change
effort applied to make the last change
system(s) in which it resides
applications to which it interfaces, ...

analyze and prioritize to select candidates for
reengineering

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 8

Document Restructuring
Weak documentation is the trademark of many legacy systems.
But what do we do about it? What are our options?
Options …

Creating documentation is far too time consuming. If the system works, we’ll
live with what we have. In some cases, this is the correct approach.
Documentation must be updated, but we have limited resources. We’ll use a
“document when touched” approach. It may not be necessary to fully
redocument an application.
The system is business critical and must be fully redocumented. Even in this
case, an intelligent approach is to pare documentation to an essential minimum.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 9

Reverse Engineering
dirty source code

restructure
code

extract
abstractions

refine
&

simplify

clean source code

initial specification

final specification

processing

interface

database

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 10

Code Restructuring

Source code is analyzed using a restructuring tool.
Poorly design code segments are redesigned
Violations of structured programming constructs are noted and
code is then restructured (this can be done automatically)
The resultant restructured code is reviewed and tested to
ensure that no anomalies have been introduced
Internal code documentation is updated.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 11

Data Restructuring
Unlike code restructuring, which occurs at a relatively low level of
abstraction, data structuring is a full-scale reengineering activity
In most cases, data restructuring begins with a reverse engineering activity.

Current data architecture is dissected and necessary data models are defined
(Chapter 9).
Data objects and attributes are identified, and existing data structures are
reviewed for quality.
When data structure is weak (e.g., flat files are currently implemented, when a
relational approach would greatly simplify processing), the data are
reengineered.

Because data architecture has a strong influence on program architecture
and the algorithms that populate it, changes to the data will invariably
result in either architectural or code-level changes.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 12

Forward Engineering
1. The cost to maintain one line of source code may be 20 to 40
times the cost of initial development of that line.

2. Redesign of the software architecture (program and/or data
structure), using modern design concepts, can greatly facilitate future
maintenance.

3. Because a prototype of the software already exists, development
productivity should be much higher than average.

4. The user now has experience with the software. Therefore, new
requirements and the direction of change can be ascertained with
greater ease.

5. CASE tools for reengineering will automate some parts of the job.

6. A complete software configuration (documents, programs and
data) will exist upon completion of preventive maintenance.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 13

Economics of Reengineering-I

A cost/benefit analysis model for reengineering has been
proposed by Sneed [SNE95]. Nine parameters are defined:

P1 = current annual maintenance cost for an application.
P2 = current annual operation cost for an application.
P3 = current annual business value of an application.
P4 = predicted annual maintenance cost after reengineering.
P5 = predicted annual operations cost after reengineering.
P6 = predicted annual business value after reengineering.
P7 = estimated reengineering costs.
P8 = estimated reengineering calendar time.
P9 = reengineering risk factor (P9 = 1.0 is nominal).
L = expected life of the system.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided
with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 14

Economics of Reengineering-II
The cost associated with continuing maintenance of a candidate application
(i.e., reengineering is not performed) can be defined as

Cmaint = [P3 - (P1 + P2)] x L

The costs associated with reengineering are defined using the following
relationship:

Creeng = [P6 - (P4 + P5) x (L - P8) - (P7 x P9)] `

Using the costs presented in equations above, the overall benefit of
reengineering can be computed as

cost benefit = Creeng - Cmaint

